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This paper explores the integration of Arti�cial Intelligence (AI) algorithms and Geographic 
Information System (GIS) technology for predicting and preventing tra�c accidents. Traditional 
statistical methods are insu�cient for capturing the complex factors in�uencing accidents, while AI 
and GIS allow for enhanced predictive accuracy and proactive safety interventions. The integration of 
AI and GIS enables the analysis of diverse datasets—historical crash data, environmental conditions, 
and road characteristics—through advanced algorithms, enhancing accident prediction and o�ering 
data-driven insights. Key bene�ts include precise data collection, real-time processing, and high 
mapping accuracy, which enable transportation agencies to identify high-risk areas, implement 
targeted safety measures, and improve emergency response. The paper presents a framework for 
AI-GIS accident prediction, involving stages like data collection, spatial analysis, model development, 
and monitoring. It details data preparation, emphasizing data cleaning, GIS feature extraction, and 
temporal-spatial aggregation to improve prediction accuracy. Geospatial models (like spatial 
regression) and Machine Learning (ML) algorithms (e.g., Random Forest and Optimized Support 
Vector Machines (SVM)) are applied to identify accident hotspots and assess risks e�ectively. The 
study, set in the United Kingdom, demonstrates AI-GIS’s potential in enhancing tra�c safety, though 
challenges such as technology costs and data quality persist. 
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Introduction
According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Figure 1. Diagram of the traffic accident prediction analysis model based on AI and GIS.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Figure 2. The locations of traffic crashes in the UK in 2022 displayed 
on the GIS map.

Table 1. �e sample of study data.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

Model SVM GA-SVM GWO-SVM SSA-SVM
Accuracy 0.76 0.83 0.84 0.87
F1 Score 0.66 0.83 0.84 0.87
Precision 0.66 0.83 0.93 0.94
Recall 0.76 0.83 0.83 0.86
AUC 0.74 0.87 0.88 0.89

Table 2. Comparison of prediction results between AI algorithms.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Figure 3. The dangerous accident locations.

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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According to the World Health Organization's (WHO) 2023, 
there were about 1.19 million deaths and 50 million injured 
every year, mostly in low- and middle-income countries [1]. 
Tra�c accidents pose serious risks to public safety and disrupt the 
e�ciency of road networks. Integrating machine learning with 
advanced data analysis has transformed the way we predict and 
prevent these incidents. By harnessing powerful algorithms and 
neural networks, transportation agencies can analyze vast datasets 
to detect potential risk factors and implement proactive safety 
measures. �is approach not only improves tra�c safety but also 
helps reduce accident rates and the associated economic costs.

 Developing advanced accident prediction models leverages 
deep learning alongside comprehensive tra�c accident analysis. 
�ese models analyze complex data inputs, such as historical 
crash reports, environmental conditions, and roadway 
characteristics, to generate accurate forecasts. By utilizing 
arti�cial intelligence, the accuracy of these models increases, 
o�ering valuable insights into accident patterns and trends. �is 
data-driven strategy empowers transportation authorities to 
implement targeted interventions, ultimately enhancing road 
safety and reducing the likelihood of tra�c accidents.

 Conventional tra�c accident research o�en depends on 
statistical analysis, which has limited predictive accuracy and 
fails to fully capture the multiple factors that in�uence accidents 
[2]. �ese traditional methods fall short of addressing the 
inherent spatial complexity of tra�c accidents. �e success of 

any accident prevention strategy largely depends on the quality 
and accuracy of collected data and the appropriateness of the 
analysis methods applied.

 Furthermore, the limited adoption of modern tra�c 
management technologies o�en leads to congested and 
hazardous road conditions. Traditional approaches struggle to 
keep up with the complexities of expanding road networks and 
the growing volume of vehicles, underscoring the need for a 
more data-driven approach to studying accident patterns and 
pinpointing risk factors.

 �e structure of this paper is as follows: Section 2 provides 
a review of previous studies. Section 3 describes the 
methodology and data utilized in the study. Section 4 presents 
the results and includes a discussion. Lastly, Section 5 outlines 
the conclusions, discusses limitations, and proposes directions 
for future research.

Literature Review
Combining AI, ML, and GIS presents a powerful solution to 
deal with the drawbacks of traditional tra�c analysis methods. 
�ese advanced technologies enhance predictive accuracy and 
enable proactive safety measures. By utilizing AI and ML 
models to anticipate and address accident risks, this approach 
o�ers a more precise and timely alternative to conventional 
methods, promising substantial improvements in public safety 
and tra�c management [3-5]. 

 GIS technology is pivotal for conducting e�ective safety 
analyses, as it integrates diverse data sources—such as tra�c 
volumes, road geometry, pavement conditions, and weather 
data—into a uni�ed analytical framework. �is comprehensive 
integration allows for in-depth, root-cause analysis of tra�c 
incidents [6-10]. Each technology has its own strengths; when 
GIS and AI are combined, their power is maximized, especially 
in the �eld of transportation in general and tra�c accident 
analysis in particular, as big data is fully utilized. Key bene�ts of 
AI and GIS integration include:

1. Enhanced data collection and management: GIS technology 
enables precise �eld data collection and seamless data 
management across systems, ensuring data accuracy and 
reliability.

2. Advanced analytical capabilities: AI-driven mapping can 
generate detailed vector layers for essential infrastructure, 
including crosswalks, sidewalks, and bike lanes, providing 
valuable insights for safety planning.

3. Real-time data processing: Modern systems allow for 
real-time data updates, supporting timely and 
data-informed decision-making.

4. Greater accuracy: AI-based solutions achieve a high level of 
mapping precision, comparable to skilled manual GIS 
processing, thereby boosting overall data quality and 
relevance.

 Integrating AI and GIS thus empowers transportation 
authorities to predict, manage, and mitigate tra�c risks more 
e�ectively, contributing to safer and more e�cient road 
systems, including:

1. Accident hotspot identi�cation: By identifying high-crash- 
density areas, agencies can focus on accident-prone 
locations, fostering safer driving environment.

2. Proactive safety interventions: Pinpointing high-risk zones 
enables the implementation of targeted measures to mitigate 
accident risks.

3. Enhanced emergency response: Accurate severity 
predictions support optimal emergency response, helping 
reduce fatalities and injuries.

4. Optimized tra�c management: Advanced models 
contribute to improved tra�c �ow control and better 
transport planning.

5. Data-driven decision-making: �e interpretability of these 
models empowers transportation planners to prioritize 
interventions that will have the greatest safety impact.

 In reality, several studies have applied GIS and ML 
integration in tra�c accident analysis, but most have focused 
only on utilizing clustering and association rule mining 
techniques to identify key factors causing accidents [11]. �e 
study applied ML models to predict the severity of tra�c 
accidents through R Studio and ArcGIS [12]. Although 
challenges such as technology costs, data quality, and 
infrastructure deployment remain to be addressed, the potential 
of integrating AI and GIS to enhance tra�c safety is highly 
promising. �is combination is expected to drive meaningful 
advancements in tra�c safety management, contributing to 
accident reduction and the protection of human lives. 
�erefore, this study provides a methodological contribution by 
integrating GIS and AI technologies for tra�c accident 
prediction and analysis.

Methodology and Data
Methodology
�e integration of AI and GIS has revolutionized the approach 
to predicting and preventing tra�c accidents. An e�ective 
AI-GIS accident prediction system comprises several key 
components that work in tandem to provide accurate and 
actionable insights. �ese components include a data collection 
module, a geospatial analysis engine, a machine learning core, 
and a visualization interface (Figure 1).

 Figure 1 illustrates the methodological framework for 
tra�c accident prediction and safety enhancement. �e process 
starts with input data acquisition, which includes various 
sources such as tra�c, historical crashes, road conditions, 
weather, and geographic data.

 Next, data processing is performed, where GIS is utilized 
for data cleaning and spatial analysis. �is leads to data analysis, 
where AI, ML, and deep learning models detect risk factors and 
predict accident risks. Following analysis, the forecasting model 
development stage involves training AI models, optimizing, 
testing accuracy, and deploying them.

 �e output data generated includes accident predictions, 
accident risk maps, and tra�c safety recommendations. Finally, 
a monitoring and updates process ensures continuous 
re�nement, improving model performance and adapting to new 
data.

 �is methodological �ow supports a comprehensive 
approach to analyzing and forecasting tra�c risks and 
enhancing safety recommendations based on data-driven 
insights.

 Although AI and GIS have been widely applied in tra�c 
accident prediction analysis, they have mainly been used 
independently, with limited research on integrating these two 
technologies. Each technology has its own strengths, and when 
combined, they can form a highly e�ective tool. �is integration 
represents a signi�cant contribution to this paper.

Spatial regression models

Spatial regression models have become increasingly important 
in transportation safety analysis because they e�ectively address 
spatial correlations between neighboring areas. �ese models 
have been utilized in several areas of tra�c safety research, 
including evaluating signalized intersections, assessing how 
tra�c congestion a�ects safety, and analyzing accident 
mechanisms under varying levels of congestion.

�ere are two main types of spatial regression models widely 
used [14]:

1. Spatial Lag Model (SLM): �is model is ideal when the 
dependent variable is in�uenced directly by the dependent 
variable values in neighboring regions. It assumes that 
spatial autoregressive processes a�ect only the dependent 
variable.

2. Spatial Error Model (SEM): �is model is applicable when 
both the dependent variable and surrounding values are 
in�uenced by unobserved spatial characteristics, rather than 
directly by neighboring dependent variable values. It 
assumes spatial autoregressive processes are present only in 
the error term.

 An advanced model, the Time-Fixed E�ect Error Model 
(T-FEEM), has shown promising potential for tra�c accident 
analysis. �is model accounts for both spatial correlation 
among neighboring Tra�c Analysis Zones (TAZs) and 
temporal correlation across time. In comparative studies, the 
T-FEEM has outperformed models such as ordinary least 
squares, SLM, and SEM, demonstrated by lower values in both 
the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) [14].

Advanced machine learning algorithms

Random Forests for Accident Prediction: Random forest 
algorithms have seen notable growth in use for processing 
tra�c accident data in recent years. �is ensemble learning 
technique integrates multiple decision trees to create a highly 
accurate and reliable predictive model. Its adaptability has led to 
widespread application across �elds such as medicine, 
meteorology, and statistics.

 In tra�c accident prediction, random forests have shown 
exceptional performance, particularly in managing 
high-dimensional data and maintaining strong classi�cation 
accuracy even when data points are missing. �is robustness 
makes them especially suitable for the complex and sometimes 
incomplete datasets typical in accident analysis.

 A major bene�t of random forests is their capacity to 
evaluate feature importance, helping researchers pinpoint the 
most critical factors in�uencing accident severity. For example, 
studies have found that newly considered features like accident 
location, accident type, road segment details, and driving speed 
are o�en more in�uential than traditional factors like time of 
day or vehicle age [15]. 

 Support Vector Machines (SVMs) in Risk Assessment: 
SVMs have proven to be highly e�ective in risk assessment for 
predicting tra�c accidents. �eir performance can be further 
enhanced by applying various heuristic optimization 
algorithms [16]. 

 SVM is a classi�cation algorithm that aims to �nd the 
optimal hyperplane to separate data classes. Here are the 
relevant formulas for SVM:

Separating Hyperplane: A hyperplane can be de�ned as:

w .x+b=0      (1)

where w is the weight vector, x is the feature vector, b is the bias 
term.

 SVM Objective Function: �e goal is to optimize the 
margin between classes and the hyperplane. �e objective 
function is:

        (2)

Heuristic optimization algorithms for SVM

Genetic Algorithm (GA): Fitness Function: Measures the 
“goodness” of each solution; for SVM, a classi�cation error 
function can be used.

 Crossover and mutation operators are used to create new 
generations of solutions from existing ones to �nd the optimal 
solution [17].

 Sparrow Search Algorithm (SSA): SSA simulates the 
foraging behavior of sparrows. �e formula for updating a 
sparrow’s position is [18]:

                (3)

where xi is position of sparrow i; t: iteration number; max_iter: 
maximum number of iterations.

 Gray Wolf Optimizer (GWO): GWO simulates the 
leadership hierarchy and hunting strategy of gray wolves [19].
Position update:

       (4)

where A and D are vectors based on the distance between the 
wolf and prey

 Heuristic algorithms like GA, SSA, and GWO can enhance 
SVM performance by identifying optimal parameters, 
improving the accuracy and e�ectiveness of tra�c accident 
prediction models.

Study area and data
�e study area is the United Kingdom (UK). �e UK covers a 
total area of about 244,376 km², with 242,741 km² being land. 
Its population stands at 67,837,434. �e country has a radial 
road network comprising 46,904 km of main roads, 3,497 km of 
motorways, and 344,000 km of paved roads. As of 2022, there 
were 40.8 million licensed vehicles in the UK.

 In 2022, the UK recorded 1,711 road fatalities, a 2% drop 
from 2019, and 29,742 cases of death or serious injury, down 
3%. Total casualties of all severities were 135,480, a 12% 
decrease. Vehicle travel returned to pre-COVID levels, with 328 
billion miles traveled, but fatalities per billion miles rose by 2% 
to 5% (Figure 2).

 �e tra�c accident data used for analysis was collected 
from January to December 2022, with a total of 106,005 
accidents, including full spatial information (such as accident 
location, as shown in (Figure 2) and attributes (such as date, 

time, cause, vehicle type, accident type, etc., as shown in Table 
1), all provided via the website. Additionally, the road network 
data was sourced from the OpenStreetMap website, including 
both spatial and attribute data of the road network.

Data preparation and enrichment

An e�cient AI-GIS accident prediction system is built on the 
foundation of data preparation and enrichment. To guarantee 
the accuracy, consistency, and applicability of the data utilized 
in the model, this critical stage entails a number of tasks.

 Data Cleaning and Validation: �e initial phase of data 
preparation involves cleaning and validating the data. �is 
entails the removal or modi�cation of data that is incorrect, 
incomplete, irrelevant, duplicated, or improperly formatted. 
Data cleaning can be a time-intensive process, o�en consuming 
up to 45% of a data scientist's time. It includes correcting 
spelling and syntax errors, standardizing datasets, rectifying 
issues like empty �elds, and identifying duplicate entries.

To maintain data quality, a systematic approach is required, 
which involves: 

1. Eliminating duplicate observations and irrelevant data
2. Filtering out unwanted outliers
3. Correcting structural errors, such as inconsistent naming 

conventions or improper capitalization
4. Addressing any missing data
5. Validating the cleaned dataset

 For machine learning applications, a dataset should ideally 
contain at least 1,000 rows and 5 columns, with the �rst column 
designated as an identi�er. �e data should be consolidated into 
a single �le or table, with minimal missing values and no 
personally identi�able information.

 Feature Extraction from GIS: GIS is essential for extracting 
signi�cant features for accident prediction models. �is 
involves generating new metrics such as distance, proximity, 
and density, which can be fed into machine learning algorithms. 
Techniques like spatial clustering and spatial interpolation are 
commonly used to create these features.

 To e�ectively integrate geospatial data, a strong framework 
is necessary to unify information from various sources, 
including GPS, satellite imagery, and social media. GIS tools 
excel in this area, allowing for the consolidation and alignment 
of disparate datasets into a comprehensive geospatial database.

Key static features obtained from GIS data include:

1. Road geometry (e.g., curvature)
2. Speed limits
3. Population density
4. Road orientation
5. Sinuosity
6. Tra�c signs

 Temporal and Spatial Aggregation: Temporal and spatial 
aggregation are critical for preparing data for accident 
prediction models. Temporal aggregation involves grouping 
data into speci�c time frames, such as hourly, daily, weekly, or 
monthly intervals, enabling the model to identify 
time-dependent patterns in accident occurrences. In contrast, 
spatial aggregation groups data based on geographic areas, such 
as countries, cities, or states, which helps identify spatial 
patterns and accident hotspots.

 Incorporating both spatial and temporal dimensions is 
vital for models reliant on dynamic location data. 

Temporal-spatial models that consider changes over time and 
space o�er a more comprehensive context for analysis. �ese 
models can incorporate dynamic features such as:

1. Weather conditions
2. Tra�c volumes
3. Solar geometry
4. Time variables (hour, month, day)

 To manage the extensive geospatial datasets needed for 
accident prediction, e�cient data management strategies are 
essential. �is may involve using optimized storage solutions 
and cloud-based platforms. Additionally, employing spatial 
indexing techniques, like R-trees or Quadtrees, can enhance the 
speed of spatial queries and minimize computational overhead.
By implementing these data preparation and enrichment steps, 
organizations can establish a solid foundation for their AI-GIS 
accident prediction models, leading to more accurate and 
reliable outcomes.

Results and Discussions
�e table 2 compares the performance of the standard SVM 
model and its optimized versions using heuristic algorithms, 
including GA-SVM, SSA-SVM, and GWO-SVM. Each model 
demonstrates signi�cant di�erences in e�ectiveness, evaluated 
through metrics such as Accuracy, F1 Score, Precision, Recall, 
and AUC.

 �e standard SVM model exhibits the lowest performance 
among all models. Speci�cally, its accuracy is only 0.76, with an 
F1 Score and Precision of 0.66, indicating weak classi�cation 
capability, especially in balancing Precision and Recall. �e 
AUC for standard SVM is 0.74, re�ecting average performance 
in distinguishing between data classes.

 In contrast, the GA-SVM model, optimized with the 
Genetic Algorithm, shows a signi�cant improvement over the 
standard SVM. Both accuracy and F1 Score increase to 0.83, 
while AUC reaches 0.87, demonstrating better classi�cation 
performance. �is marks a major improvement, highlighting 
the e�ectiveness of applying heuristic algorithms.

 �e GWO-SVM model, optimized using the Grey Wolf 
Optimizer, also achieves strong performance with an accuracy 
and F1 Score of 0.84. Its Precision is 0.93, close to SSA-SVM, but 
Recall is lower at 0.83. �e AUC of GWO-SVM is 0.88, better 
than GA-SVM but slightly behind SSA-SVM. 

 Finally, the SSA-SVM model, which employs the Sparrow 
Search Algorithm, is the best-performing model in the table. 
With accuracy and F1 Score both at 0.87 and an outstanding 
Precision of 0.94, SSA-SVM showcases superior classi�cation 
capability, particularly in minimizing false positives. Its AUC of 
0.89, the highest among all models, indicates excellent ability to 
di�erentiate between classes.

 �ese �ndings highlight the potential of optimized SVM 
models to improve the accuracy and reliability of tra�c accident 
risk assessments. 

In addition, the results indicate that integrating AI algorithms 
with GIS signi�cantly enhances the ability to pinpoint high-risk 
areas. By leveraging spatial data and machine learning, the 
system generated detailed accident risk maps, which provide 
actionable insights for transportation agencies. �ese insights 
enable targeted safety measures, such as enhanced signage, 
speed regulation in high-risk zones, and improved road 
infrastructure. In addition, dangerous locations are also 
classi�ed into di�erent levels of danger from low to very high 
shown as in Figure 3. �is will help tra�c managers easily 
manage and promptly have e�ective solutions.

4. Informed urban planning: Reliable models guide 
policymakers in designing safer transport systems, 
considering tra�c volume, road geometry, and population 
density.

5. Optimized tra�c management: �ese insights can be used 
to improve tra�c �ow control and inform better 
transportation planning. �is could lead to:

• Reduced congestion
• Smoother tra�c �ow
• Minimized travel delays

6. Data-driven decision-making: AI-GIS models o�er insights 
into the factors contributing to accidents, allowing 
transportation planners to prioritize interventions with the 
greatest impact on safety.

 �ese advancements translate into measurable safety 
enhancements, such as a reduction in accident rates and 
associated costs, ultimately saving lives and fostering safer 
communities.

Conclusions
�e standard SVM model performs the poorest among all 
models, underscoring the need for optimization techniques to 
improve its e�ectiveness. SSA-SVM stands out as the 
best-performing model, suitable for tasks requiring high 
accuracy and the ability to minimize false positives. GA-SVM 
and GWO-SVM also demonstrate signi�cant improvements 
over the standard SVM but fall short compared to SSA-SVM 
overall. �ese optimized models are highly e�ective for complex 
classi�cation tasks that demand high precision.

 �e combination of AI and GIS technologies is 
transforming accident prediction and prevention. By merging 
advanced data analysis with spatial insights, this integration 
enhances the accuracy of identifying high-risk zones, which 
supports more e�ective, targeted interventions and improved 
road safety. Real-world applications demonstrate signi�cant 
bene�ts, from optimizing urban tra�c patterns to improving 
emergency response times.

Future Directions
Looking forward, advancements in AI-GIS accident prediction 
models show great potential for further reducing tra�c 
incidents and saving lives. As these technologies progress, even 
more adaptive systems can be developed to respond to real-time 
changes. However, fully leveraging these advancements requires 
ongoing collaboration among technology developers, urban 
planners, and policymakers to ensure that these solutions are 
implemented both e�ectively and responsibly.

Limitations and Mitigation Strategies
While the study presents promising results, it is important to 
acknowledge certain limitations:

1. Data quality and availability: �e accuracy of predictions 
relies heavily on the quality of input data. Issues like missing 
data, errors, and inconsistencies can impact the model's 
performance. Mitigation strategies include:

• Implementing rigorous data cleaning and validation 
procedures

• Developing data quality control measures

Improved prediction accuracy has real-world safety 
implications, including:

1. Accident hotspot identi�cation: By identifying areas with 
high accident densities, transportation agencies can 
prioritize these locations for safety improvements.

2. Proactive safety interventions: Accurately predicting 
high-risk zones enables targeted interventions such as: 

• Adjusting speed limits 
• Improving road design
• Enhancing visibility
• Implementing tra�c calming measures

3. Enhanced emergency response: Predicting accident severity 
can optimize resource allocation for emergency response 
teams, reducing fatalities and injury severity. �is could 
involve:
• Dispatching appropriate resources
• Planning e�cient routes
• Preparing hospitals for trauma cases

• Investing in data collection infrastructure to improve 
accuracy and completeness

2. Computational complexity: �e integration of GIS and 
advanced AI algorithms requires signi�cant computational 
resources, potentially limiting scalability. Mitigation 
strategies include: Optimizing algorithms for e�ciency and 
employing distributed computing frameworks can reduce 
computational burdens.

3. Generalizability of results: �e �ndings are based on data 
from a speci�c geographic region (UK), which may limit 
their applicability to other contexts. Mitigation strategies 
include: Expanding the dataset to include diverse regions 
and conducting localized calibration can improve the 
generalizability of the model.
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